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Chapter 1: Introduction

1.1 What is Prog Rock?

Progressive rock, commonly referred to as prog rock, is a genre of music that emerged in the
late 1960s and early 1970s. Prog rock is often characterized by its complex compositions, varied
instrumentation, and influences from classical and jazz genres.

Prog rock compositions are often highly intricate and sophisticated. They frequently incorporate
complex time signatures, unconventional song structures, and elaborate arrangements. These
songs often feature multiple sections with varying musical themes and motifs in contrast to the
chorus-verse structure found in mainstream rock music. Time signatures such as 7/8 or even 5/4
are often used in contrast to 4/4 time frequented by other genres.

Instruments such as keyboards, synthesizers, flutes, and violins, are used in prog rock in addition
to traditional rock instruments like guitar, bass and drums.

Prog rock also draws inspiration from a diverse range of musical genres, including classical music
and jazz. Progressive rock often employs complex chord progression and harmonies reminiscent of
classical music.

1.2 Music Genre Classification

Music genre classification is a critical task in the field of Music Information Retrieval (MIR), aimed
at categorizing music into distinct genres based on audio features. This process is essential for
various applications such as music recommendation, automatic playlist generation, and content-
based music retrieval. [Pri422]

Traditional machine learning methods, such as Support Vector Machines and Random Forests,
have been widely used in the problem of music genre classification. Deep learning methods, such
as Convolution Neural Networks (CNNs) [Cho+17] and, more recently, Transformers [ZCZ20],
have been used extensively to classify music. However, deep learning has emerged as the clear
winner and will be the primary focus of our work.

This document is a report on our work to make machines differentiate between progressive rock
music and other genres of music. Chapter 2 explains how we clean and extract features from
raw audio data. Chapter 3 describes our Ensemble method experiments. Chapters 4-5 cover deep
learning and discuss a 1D CNN model used to classify music. Chapter 6 describes how we applied
the Audio Spectrogram Transformer, a SOTA audio classification model. In Chapter 7, we present
our findings and discuss them.
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Chapter 2: Feature Extraction

2.1 Input Features

For the data collection and processing part, the songs were collected from directories containing
both progressive rock and non-progressive rock songs. Each song was loaded using Librosa, which
is a Python package for music and audio analysis. We use Librosa to load each song as well as
pre-process it. For example, we trim silence from the audio, normalize it, and break the audio into
smaller segments for analysis.

In regards to our feature extraction, we determined common attributes from our segments of audio.
Spectrograms, MFCCs, chromograms, and beat position. Spectrograms are a visual representation
of the frequencies of a signal as they vary with time. It provides insights into the frequency content
of the audio signal over time. MFCCs are coefficients that capture the short-term power spectrum
of a sound and are widely used in speech and audio processing tasks. Chromagrams represent
the energy distribution of pitch classes in a given audio segment, providing information about the
harmonic content of the audio. Beat position gives information which identifies the timing of beats
within the audio. Beat positions are crucial for understanding the rhythmic structure of the music.

Next, we needed to prepare our model for input. Once the features are extracted for each audio
segment, we combine them into a single tensor. This tensor represents the input for our model.
Each row of our tensor corresponds to a segment of the song while each column represents a
feature such as spectrogram, MFCCs, chromogram, or beat position.

Now we must discuss the data splitting portion of the project as well as representing our data in
a chart form. We split the dataset into training and validation sets so we may use one dataset to
train our model and the other to test our model's accuracy. 20% of the songs from our dataset
are randomly selected to be present in the validation set while the other 80% are used to train
the model. Having this diverse split of our data ensures our model is trained and evaluated on a
slew of examples, which can help us assess it generalization capability. After we split the data,
our script counts the number of songs in both our training and validation sets. This information
is then visualized using a chart, which helps understand the balance between the training and
validation data. Using a chart helps us visually verify that both the training and validation sets
are adequately representing the entire dataset.
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Figure 2.1: Visualizing sequence input (i) Spectrogram (ii) MFCCs (iii) Chromagram (iv) Beat
Position for a 10 second snippet of Another One Bites the Dust by Queen

2.2  Winner-take-all voting strategy

In this section, we describe a majority vote algorithm that was used to label the songs using the
output of the classifier. Each snippet of a song is run through our neural network, which assigns
two probabilities of label prog and non-prog. If the probability of label prog is greater than non-
prog, i.e if the classifier outputs a prog likelihood of greater than 0.5, the snippet is classified
as prog and vice-versa for non-prog. Each classification result from the snippets contributes a
vote towards the final song classification. A snippet classified as prog adds a vote for prog, and
similarly, a non-prog classification adds a vote for non-prog. After all, snippets are classified, and
the votes are totaled. If the number of prog votes exceeds the number of non-prog votes, the
song is classified as "Progressive Rock." (2.2) Conversely, if non-prog votes are in the majority,
the song is classified as "Non Progressive Rock." (2.3) We
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Figure 2.2: Classifying 50 Snippets of Toxicological Whispering by Amon Diiiil |l using our winner-
take-all voting strategy
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Figure 2.3: Classifying 50 Snippets of All the Stars by Kendrick Lamar & SZA using our winner-
take-all voting strategy
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Chapter 3: Bagging, Boosting and Decision

Trees

3.1 Ensemble Methods for Classification

Using Ensemble Methods for Classification tasks is the approach of combining various models
together with the goal of obtaining a system with improved accuracy and reduced over-fitting.
The idea is that the combination of the multiple models is better than the output of the individual
models themselves, and it works well with classification tasks that take input features and predict
the outcome based on these features (ie. classifying prog rock vs non prog rock given input
features listed above).

The two main categories that ensemble methods fall into are Bagging and Boosting. Bagging is
the approach in which multiple models are trained using different subsets of the training set, with
replacement, and every model performs classification and the majority vote decides on the final
outcome. Some examples of Bagging techniques include Random Forest, Bagging, and ExtraTrees.
Boosting, on the other hand, is the approach of training the various models in sequential order
where the models learn from the mistakes of the previous training. This leads to a gradual increase
in performance, and some examples of this approach include XGBoost and Gradient Boosting. All
of these models mentioned can be used via the sklearn ensemble library.

In this project, we believed that using ensemble methods to approach the complex task at hand
was worth exploring. We researched and trained multiple ensemble classification models with
both boosting and bagging methods in mind, including Random Forest, Bagging, and ExtraTrees
(bagging and decision trees) as well as XGBoost and Gradient Boosting (boosting).

3.2 PCA For Dimensionality Reduction

Since the size and complexity of the dataset was large, before running some of the ensemble
methods we needed to find a way to reduce the dimensionality of the dataset. We were conducting
the project with limited computational resources and to tackle this problem we utilized Principle
Component Analysis. By reducing the number of features, our models were more efficient and
easier to run. A general trend that we saw was reducing the dataset to too few features (ie. 100)
reduced the accuracy, so we settled for 200 features (despite the longer training time) for improved
accuracy.
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Figure 3.1: Flow chart describing how we've combined PCA with ensemble methods

3.3 Bagging and Decision Trees (Random Forest,
ExtraTrees, and Bagging)

In this project, we implemented several bagging methods, where multiple models (decision trees
in our case) were trained on subsets of the dataset and the output predictions were aggregated to
improve model accuracy.

The first method we employed was Random Forest for Classification. The reason for this choice
was the ability of this classifier to handle complex datasets with many features, such as the features
in our music classification project. At training time, multiple decision trees are created and the
output of the model is the mean prediction of the classes. Since the Random Forest Classifier
algorithms are generally fast to train, we decided not to use the PCA approach described for this
bagging method, with the number of trees set in the forest set to 101.

In similar fashion to Random Forest, we attempted to train an Extra Trees Model. This model
builds many trees, but in contrast to Random Forest it selects the splits randomly rather than
using the best split found in the subset. The purpose of using Extra Trees is adding this extra
layer of randomness to the model and reducing the variance while doing so. Again, we set the
number of different decision trees to 100 by setting the n estimators parameter to this value, and
we avoided the use of PCA here due to the faster training nature of the model.

Our last approach to explore bagging was with the use of the Bagging Classifier with the Decision
Tree Classifier as a base estimator and the number of trees set to 50 due to limited computational
resources. We also utilized PCA with a number of features equal to 100 due to extremely long
training time. The way in which we executed this approach was the decision tree classifier was the
individual model used repeatedly in the bagging ensemble method.

During the training of these models, the training accuracy was nearly 100 percent for each method.
All of these models were trained using 80 percent of the training dataset, as 20 percent was set
aside for validation. The validation set approach as well as the test set approach will be explained
later in the report.
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Figure 3.2: Random Forest feature importance out of 34560 features
3.4 Boosting (XGBoost and Gradient Boosting)

We also implemented several boosting methods of ensemble learning including XGBoost and Gra-
dient Boosting. Boosting is the approach in which models are built in sequence and builds off of
the errors of each predecessor to improve the model accuracy while reducing bias.

XGBoost, also known as eXtreme Gradient Boosting, is an enhanced and efficient implementation
of gradient boosting. Known for its handling of large datasets, speed, and effectiveness in handling
complex problems, we decided to run XGBoost with reduced data using PCA. The different runs
we attempted using XGBoost include PCA with 100 and 200 features, as well as with 100 and 200
rounds of boosting. Generally, the model performed best with PCA to 200 features and 200 rounds
of boosting, learning rate at 0.1 and max depth of 5 (due to limited computational resources). The
training accuracy for this model ranged from 80-90 percent depending on the hyperparameters,
and the validation and test results will be discussed in a later section.

Lastly, we attempted the Gradient Boosting approach, a model designed for increased accuracy
rather than the efficiency that XGBoost is known for. We used the Gradient Boosting Classifier
from scikit-learn and explored training with n components of PCA ranging from 100-200 and the n
estimators of Gradient Boosting also ranging from 100-200. We set the learning rate to 0.1, and the
max depth to 3. The reason for the simplified hyper parameters here is due to gradient boostings
decreased efficiency than what we saw in XGBoost. The training accuracy on the training set was
about 77 percent, lower than before and the validation and test set results will be discussed with
the results.

Page 7 of 20



Chapter 4: 1D CNN Setup

4.1 Baseline

1D Convolutional Neural Networks (1D CNNs) were developed initially to handle sequence data or
any data with a temporal dimension. They are particularly suited for applications where the input
data is naturally one-dimensional, such as audio signals, time series, or sequential data. [AK21]
1D CNNs are used in analysing biomedical signal like EEG or ECG signals and data from sensors,
such as accelerometers or gyroscopes. [Kir+19] This gave us a good reason to explore 1D CNNs
and code up the previous project as a baseline. We build a depthwise-CNN, starting off with 3 1D
convolution layer with constant kernal size and padding. This is followed by a 3 Linear Layers. The
model architecture consists of sequential convolutional layers that increase the number of channels
from 160 to 256 and then to 512. Each convolutional layer uses a kernel size of 3, typical for
capturing patterns in time-series data like audio. The stride of 1 and padding of 1 are used to
maintain the dimensionality of the input through the layers. No pooling was utilized.

We employ the ReLU (Rectified Linear Unit) as our activation function after each convolutional
and fully connected layer except the last fully connected layer to introduce non-linearity into the
model, helping it learn more complex patterns in the data. We use the nn.CrossEntropyLoss()
as our loss function, implicitly a softmax to the target class probability. Adam [KB17], an adaptive
learning rate optimization algorithm, is specifically engineered for the training of deep neural
networks. It uniquely calculates individual learning rates for various parameters, enhancing the
efficiency and effectiveness of the training process. We use a low learning rate of 0.001.

We train the model over 10 epochs multiple times and end up with the training accuracy of about
72% on the snippets on average. We evaluate the model on the validation set and achieve an 55%
on the snippets.
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Figure 4.1: Diagram representing a 1D CNN model
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Chapter 5: 1D CNNs Model Architecture

Here, we present the architecture of our two best performing 1D deep convolutional neural net-
works. We have decided to name these two networks as Zuck and Satya to honor our two modern
overlords. Standing on the shoulders of the giants that were previous CAP 6610 students, we
decided to stick with the Adam optimizer with a learning rate of 1072 and an epoch size of 10 for
both networks.

5.1 Zuck

The architecture of the Zuck 1D deep convolutional neural network is presented in Figures 5.1 and
5.2. The network consists of five convolutional layers, each followed by batch normalization and
ReLU activation. Following these layers, the output is flattened into a 1D vector, serving as input
to three fully connected layers: two hidden layers with RelLU activation and one output layer. We
used our winner-take-all voting strategy to predict the genre of the song based on the classification
of each snippet in the output layer.

The input layer is a tensor of shape of [batch size, in_channels, seq length]. The input data
shape of each sample is [160, 216] where 216 is the sequence length and 160 is the number of input
channels. These are then fed to five convolutional layers with varying kernel sizes, and strides.
The first convolutional layer with output channels of 320 and kernel size of 3 preserves the input
size of 216. Then, the second, third and fourth convolutional layers, with a stride of 2 and a kernel
size of 5 progressively reduce the dimensions to 107, 53, and 26, respectively. Finally, the last
convolutional layer maintains the size at 26. The feature maps are then merged to a single vector
of size 4680, which was then fed to the 3 fully connected hidden layers.

For non-linearity, each convolutional layer and the first two hidden layers were followed by a ReLU
activation function. Batch normalization is implemented after each convolution layer to normalize
and stabilize the activations. Similarly, a dropout technique with a probability of 0.25 was used
after each activation to prevent overfitting.

Input Convl Conv2 Conv3 Conv4 Conv5
Features 160 -> 320 320 -> 480 480 -> 640 640 -> 320 320->180
[160, 216] Size: 216 Size: 107 Size: 53 Size: 26 Size: 26

Batch Norm -> ReLU -> Dropout

4 6;C01_> FC2 FC3
200 200 -> 20 20->2

ReLU -> Dropout

Figure 5.1: Simple architecture of the Zuck model
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Input Convl Conv2 Conv3 Conv4 Conv5
Features 160 -> 240 240 -> 360 360 -> 480 480 -> 256 256 -> 128
[160, 216] Size: 216 Size: 107 Size: 107 Size: 52 Size: 52

ReLU -> Dropout

67':8(;1—> FC2 FC3
256 256 -> 10 10->2

ReLU -> Dropout

Figure 5.4: Simple architecture of the Satya model
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Figure 5.5: Dilated Convolution

5.2 Satya

The Satya model is structured similarly to the Zuck model. It is composed of five convolutional
layers, each complemented by an activation function to ensure effective non-linearity and a dropout
of 0.2 to prevent overfitting. Starting with a sequence length of 216, the network reduces the di-
mensions to 52 before flattening to a vector of size 6784 after the fifth convolutional layer. These
dilated convolutions aim to capture larger context without significantly increasing the computa-
tional cost.

The key difference between the two models lies in the learning rate used for Satya model. Here, we
employ a learning rate scheduler unlike the Zuck model which used a single value. Specifically, we
combined a linear warm-up phase, where we initially allowed the learning rate to increase gradually
from zero to a set value of 1073, with a cosine decay to adjust the learning rate over epochs.
This approach aims to have a stable training during early epochs, and further fine-tuning using
progressively smaller updates to prevent overshooting.

Also, dilated convolution is strategically implemented in one of the middle layers. This placement
is crucial as it allows the network to capture broader contextual information in the intermediate
stages of processing, which is essential for tasks requiring detailed spatial understanding.
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Chapter 6: Audio Spectrogram Transformer

CNNs have been the core framework for audio classification for the past decade. However, in
recent times, the use of the Transformer architecture, which has self-attention [Vas+23] at its
heart, has become widespread. The Audio Spectrogram Transformer (AST), a convolution-free,
purely attention-based model [GCG21] for audio classification caught our eye as it was the first
convolution-free and purely attention based model which featured a simple architecture and superior
SOTA performance on audio classification datasets. It is closely related to the ViT Transformer
architecture [Dos+21] for vision tasks. A difference being that the ViT has only been applied to
fixed-dimensional inputs (images), while AST can process variable-length audio inputs.

We now discuss the specifics of the working of the model. First, the raw input audio waveform
of 5 seconds is converted into a sequence of 128-dimensional log Mel-filterbank. This results in a
128x128 spectrogram. We then split the spectrogram into a sequence of 16x16 patches with an
overlap of 6 in both time and frequency dimension. These 16x16 patches are then linearly projected
into 1-D patch embeddings of size 768 to be read by the transformer encoder. In order to maintain
the spatial structure of the 2D audio spectrogram, it's important for the model to understand
the sequence or order of the patches. However, since transformers don't inherently capture this
information, positional embeddings are added to the patch embeddings. These embeddings are
of the same size (768), which helps the model effectively comprehend the order of the input
data. Unlike traditional models that may use convolutional layers for initial feature extraction,
AST employs a transformer architecture that relies solely on self-attention to process the input
embeddings. This allows the model to capture more complex patterns and dependencies in the
audio data.

For our implementation, we use an AST model that was finetuned on AudioSet, [Gem+17] 632
audio event classes and a collection of 2,084,320 human-labeled 10-second sound clips drawn from
YouTube. A Hugging Face implementation is downloaded and finetuned on the dataset. We train
the model and save over 10 checkpoints.

Periodically, the model’s performance is evaluated on a validation set to monitor its generalization
to unseen data and to prevent overfitting. We use a very small learning rate of 3 x 107°.

Output

Transformer Encoder

P I T ITT]
ShRanhanH

Linear Projection

éhﬁéﬁiﬁt

I pecogrom f_ﬂ n pr I
Patch Split with Overlap E I E

Figure 6.1: AST: Audio Spectrogram Transformer AST, by MIT Computer Science and Artificial
Intelligence Laboratory 2021 InterSpeech
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Chapter 7: Results

7.1 Ensemble Methods

7.1.1 Validation

Initially, we divided the dataset into a training and validation set with an 80/20 split. Below are the
results for the validation set, which were run after training the models, using the winner-take-all
voting strategy described earlier.

The validation set performance for the boosting methods are presented in Table 7.1, and the
validation set performance for the bagging methods are presented in Table 7.2

Table 7.1: Boosting Performance Metrics and Confusion Matrices For Validation Set

Model Accuracy | Precision | Recall | Confusion Matrix
Prog True: 28
XGBoost + PCA 93.26% | 93.33% | 87.5% Prog False: 2

Non-Prog True: 55
Non-Prog False: 4
Prog True: 28
Prog False: 2
Non-Prog True: 45
Non-Prog False: 14

Gradient Boosting + PCA | 82.02% 93.33% | 66.66%

Table 7.2: Bagging Performance Metrics and Confusion Matrices For Validation Set
Model Accuracy | Precision | Recall | Confusion Matrix
Prog True: 28
Prog False: 2
Non-Prog True: 57
Non-Prog False: 2
Prog True: 27
Prog False: 3
Non-Prog True: 57
Non-Prog False: 2
Prog True: 28
Prog False: 2
Non-Prog True: 56
Non-Prog False: 3

Random Forest 95.51% 03.33% | 93.33%

ExtraTrees 94.38% 90.00% | 93.10%

Bagging + PCA | 94.38% | 93.33% | 90.32%

7.1.2 Test

Utilizing the test set tensors, which were curated in the same way as the validation tensors, we
classified the songs as prog/non-prog using the winner take all voting strategy described previously.

The test set performance for the boosting methods are presented in Table 7.3, and the test set
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performance for the bagging methods are presented in Table 7.4

Table 7.3: Boosting Performance Metrics and Confusion Matrices For Test Set

Model

Accuracy

Precision

Recall

Confusion Matrix

XGBoost + PCA

71.57%

78.99%

69.43%

Prog True: 109
Prog False: 29
Non-Prog True: 85
Non-Prog False: 48

Gradient Boosting + PCA

70.48%

77.54%

68.59%

Prog True: 107
Prog False: 31
Non-Prog True: 84
Non-Prog False: 49

7.2

Table 7.4: Bagging Performance Metrics and Confusion Matrices For Test Set

Accuracy

Precision

Recall

Confusion Matrix

Random Forest

74.54%

71.01%

77.17%

Prog True: 98
Prog False: 40
Non-Prog True: 29
Non-Prog False: 104

ExtraTrees

76.38%

73.19%

78.91%

Prog True: 101
Prog False: 37
Non-Prog True: 106
Non-Prog False: 27

Bagging + PCA

67.89%

67.39%

68.89%

Prog True: 93
Prog False: 45
Non-Prog True: 91
Non-Prog False: 42

1D CNNs

7.2.1 Validation

To assess the performance of our models, we initially divided the dataset into a training set (80%)
and a validation set (20%). Here, we record the results of various 1D CNN models against the
validation set which served as the base models for our Zuck and Satya 1D CNNs.

Table 7.5: The top 4 performing 1D CNNs for the 89 songs in the validation set.

Model Conv Layer Hidden Layer Activation Func.
1 160 ->32 ->64 ->128 ->256 ->128 ->64 100 ->10 ->2 ReLu
2 160 ->32 ->64 ->128 ->256 ->128 ->64 | 100 ->50 ->10 ->2 RelLu
;| 160->32->64 ->128 ->256 ->128 ->64 | o~ " ReLu
(Normalized)
4 160 ->32 ->64 ->128 ->256 ->128 ->64 100 ->10 ->2 leaky ReLu

Presented in Table 7.5 are the top performing models on 89 songs in the validation set. Each
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model uses the Adam optimizer with a learning rate of 1073 and an epoch size of 10. The models
also employ similar convolutional arithmetic with no reduction in dimensions, with a 216 x 64 size
for the flattened vector after the final convolutional layer. This test aims to know the effectiveness
of different activation functions, and to introduce normalization for more stable activation. We
also added variations in the hidden layers to explore different complexities during training.

Model 1 Model 2

Prog

N
Prog
-

True
True

Non Prog
N
Non Prog
g

Non Prog

Non Prog Prog
Predicted Predicted

Model 3 Model 4

Prog

Prog

—
Prog
N

True
True

Non Prog
w
Non Prog

N

Non Prog Prog Non Prog

Prog
Predicted Predicted

Figure 7.1: Confusion matrices for the top 4 performing models on the validation set

Applying these models to the validation set show that Models 1 and 4 show the best balance
between sensitivity and specificity. The primary distinction between them lies in their activation
functions, indicating how the choice between RelLu and LeakyReLU does not have a major effect
on the model’s performance. As such, the final models we built for the test set only used the ReLU
activation function. Model 3 also follows closely, with a slightly better focus on sensitivity. This
observation led us to implement batch normalization across all convolutional layers and the first
two hidden layers in our Zuck network. On the other hand, Model 2, while still effective, suggests
the benefits of continuing with a three-hidden-layer architecture. Overall, these results provide us
a strategy in designing and refining our final models for the test set.

7.2.2 Zuck and Satya

The confusion matrices for Zuck and Satya provide insights into the way these two models ended up
being trained (Figure 7.2). The Zuck 1D CNN seems to demonstrate a more conservative behavior,
correctly identifying 114 non-prog and 101 prog rock songs while providing a high precision value
of 84.2 %. This value comes at the expense of overlooking some prog rock songs while prioritizing
rejection of non-prog tracks.

The Satya model, on the other hand, is more liberal (Table 7.6). The model seems to adapt an
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Figure 7.2: Confusion matrices for the performance of the Zuck and Satya models on the test set

aggressive strategy in identifying prog rock songs, thus giving a high accuracy (80.07 %) in place
of a low precision score (74.14 %) or a higher false negative rate. It mislabeled only 9 prog songs
as non-prog, indicating that this model has been trained to minimize the misses in the prog genre.

These results suggest that the quality of these models hinges on their particular use. The Zuck
model is more cautious in its prediction, thus is better at minimizing false positives or wrong
predictions regarding non-prog songs. Likewise, Satya is more applicable if we want to pull more
prog rock songs from a diverse set of music genres. Given these results, we further hypothesize
that although Satya would be better at discriminating prog rock from a mixed genre set, Zuck
would excel more in specific applications where the test set specifically contains non-prog rocks
that stemmed directly from prog rock (e.g. songs of progressive pop, post rock, math rock genres).

Metric Snippets Songs
Accuracy 65.41% - 67.87%  75.28% - 80.07%
Precision (Prog) 73.67% - 75.01%  89.85% - 93.47%
Recall (Prog) 71.81% - 74.01%  70.05% - 74.13%
Confusion Matrix (Snippets)

Predicted Prog  Predicted Non Prog
Actual Prog 5037 1678
Actual Non Prog 1768 2244

Confusion Matrix (Songs)

Predicted Prog  Predicted Non Prog
Actual Prog 129 9
Actual Non Prog 45 88

Table 7.6: Performance Metrics and Confusion Matrices for Satya on Test Set including confusion
matrix for best run

7.3 Audio Spectrogram Transformer

We tried our fine-tuned model on the test set. We ended up with the following results. The model
demonstrates a strong ability to classify Prog snippets with high recall, indicating it can identify
most of the positive class instances However, the precision is slightly lower, suggesting a moderate
number of false positives (as we've seen in the previous years of this project) . The overall accuracy
is close to 79.4%, which is a solid performance.
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Figure 7.3: Confusion matrix of the AST on the test set

What makes this model a good classifier that it classifies non-prog snippets most accurately.
81.25% of the non-prog were classified correctly, most by any model so far.

Misclassified songs include: Little Man (most misclassified song), Peace To The Mountain by
Coheed and Cambria, The Temple On the Edge of Time.

On the songs, the model shows a higher accuracy of approximately 85.4% compared to the
Snippets. The precision is notably high, indicating that when the model predicts a song as Prog, it
is very likely to be correct. The recall is also strong, though there is some room for improvement
in reducing false negatives. The F1 score is high, suggesting a balanced performance between
precision and recall.

Metric Snippets Songs
Accuracy 77.46% 85.87%
Precision (Prog) 79.28% 90.29%
Recall (Prog) 83.76% 83.44%

Confusion Matrix (Snippets)

Predicted Prog Predicted Non Prog
Actual Prog 11402 2979
Actual Non Prog 2210 6438

Confusion Matrix (Songs)

Predicted Prog Predicted Non Prog
Actual Prog 121 13
Actual Non Prog 24 104

Table 7.7: Performance Metrics and Confusion Matrices for Test Sets

7.4 Post Prog

Here we discuss the contents of Table 7.3, which is a list of post-prog songs along with the label
assigned. We classify merely 4 out of 22 songs as non-prog while ideally all of these songs are non-
prog. This is not surprising given that these songs are of mathcore, djent, grindcore, and post-prog
categories which stemmed directly from the prog rock genre. This is also a possible consequence
of the biggest assumption we had, which is that music classification properties supervene on audio
properties. These labels, especially the non-prog labels on post-prog rock songs, can be arbitrary
due to the historical and stylistic connection between any musical genre and its corresponding post
genre. The band Radiohead, for example, is infamous for answering, "No. We all hate progressive
rock music.", when asked if their album OK Computer was influenced by the works of progressive
rock bands such as Genesis and Pink Floyd. [San17] In this case, history weighs heavier than the
stylish connections between their songs and the prog rock genre.
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Name

Label

03 - Language Il Conspire 37.wav

AFTER THE BURIAL - A Wolf Amongst Ravens 32.wav
05. Physical Education 54.wav

MONUMENTS - | The Creator 06.wav

CHIMP SPANNER - Bad Code 40.wav

01 Arithmophobia 13.wav

07 The Race Is About To Begin 04.wav
Meshuggah- Soul Burn 13.wav

06 A Light Will Shine 02.wav

PERIPHERY - Zyglrox 02.wav

Cloudkicker - Let yourself be huge 06.wav

Veil Of Maya - Punisher 09.wav

06-1289 Voyeur Will Shine Fight For Distinction Evolution Is Mine. 60.wav
Textures - Laments Of An Icarus_49.wav
Hacktivist - DECEIVE AND DEFY _17.wav

SikTh - Hold My Finger 61.wav

08-the haarp _machine-machine over 44.wav
bl-master boot record-dma 4 cascade 10.wav
HEART OF A COWARD - Hollow 05.wav
Ol-darko us-splinter cell 45.wav

The Algorithm - Isometry 25.wav

BORN OF OSIRIS - Divergency 44.wav

prog
prog
prog
prog
prog
prog
prog
prog
prog
prog
prog
prog
prog
prog
prog
prog
prog
prog
non-prog
non-prog
non-prog
non-prog

Table 7.8: Music Tracks and their Predicted Labels
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Chapter 8: Conclusion

The problem of Music Genre classification is a difficult one with notable work done in the field of
supervised learning to make machines differentiate between our music categories.

Our pre-processing step involved extracting features like spectrograms, MFCCs, chromagrams, and
beat-on-set positions from raw audio, and these were used as input to various classifiers. However,
it is to be noted that these may not be the best features to work with, and work can be done to
investigate which features would best describe music.

We choose to work with 1D CNNs given the time-series nature of audio data. However, there is no
reason to claim that 1D CNNs perform better than 2D CNNs on audio data. Future work should
try comparing similar 2D CNN models compared to 1D CNN baselines.

Transformer architecture has become increasingly popular in recent years. It is critical that fu-
ture research focus on transformers and their ability to handle large context. We attempted to
collaborate with CNNs and Transformers but were unable to produce tangible results.

Unsupervised and semi-supervised learning methods should also be experimented with, given that
they are objectively better than supervised methods and require far less data. Given an opportunity,
we would focus on semi-supervised methods like Noisy student training for music tagging, transfer
learning, or different pre-trained models.

We leave these findings and lessons to future CAP6610 students.
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